Pure Mathematics 2

Exercise 5C

- 1 a $1 \xrightarrow[]{} 2 \xrightarrow[]{} 4 \xrightarrow[]{} 8 \xrightarrow[]{} 16 \xrightarrow[]{} 32$ Geometric, r = 2
 - **b** $2 \xrightarrow[]{+3} 5 \xrightarrow[]{+3} 8 \xrightarrow[]{+3} 11 \xrightarrow[]{+3} 14$ Not geometric (this is an arithmetic sequence)
 - c $40 \xrightarrow{-4} 36 \xrightarrow{-4} 32 \xrightarrow{-4} 28$ Not geometric (arithmetic)
 - **d** $2 \xrightarrow[]{\times 3} 6 \xrightarrow[]{\times 3} 18 \xrightarrow[]{\times 3} 54$ Geometric, r = 3
 - e $10 \xrightarrow{5} 5 \xrightarrow{2.5} 1.25$ $\times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ Geometric, $r = \frac{1}{2}$
 - **f** $5 \xrightarrow[\times(-1)]{} -5 \xrightarrow[\times(-1)]{} 5 \xrightarrow[\times(-1)]{} -5$ Geometric, r = -1
 - **g** $3 \xrightarrow[]{\times 1} 3 \xrightarrow[]{\times 1} 3 \xrightarrow[]{\times 1} 3 \xrightarrow[]{\times 1} 3$ Geometric, r = 1
 - h $4 \xrightarrow[]{} -1 \xrightarrow[]{} 0.25 \xrightarrow[]{} -0.0625$ $\times \left(-\frac{1}{4}\right)^{-1} \times \left(-\frac{1}{4}\right)^{-1} \times \left(-\frac{1}{4}\right)^{-1}$ Geometric, $r = -\frac{1}{4}$

2 a $5 \rightarrow 15 \rightarrow 45 \rightarrow 135 \rightarrow 405 \rightarrow 1215$

- **b** $4 \xrightarrow[\times(-2)]{} 8 \xrightarrow[\times(-2)]{} 16 \xrightarrow[\times(-2)]{} 32 \xrightarrow[\times(-2)]{} 64 \xrightarrow[\times(-2)]{} 128$
- c $60 \xrightarrow[]{\times \frac{1}{2}} 30 \xrightarrow[]{\times \frac{1}{2}} 15 \xrightarrow[]{\times \frac{1}{2}} 7.5 \xrightarrow[]{\times \frac{1}{2}} 3.75 \xrightarrow[]{\times \frac{1}{2}} 1.875$
- $\mathbf{d} \quad 1 \xrightarrow[]{\times \frac{1}{4}} \frac{1}{4} \xrightarrow[]{\times \frac{1}{4}} \frac{1}{16} \xrightarrow[]{\times \frac{1}{4}} \frac{1}{64} \xrightarrow[]{\times \frac{1}{4}} \frac{1}{256} \xrightarrow[]{\times \frac{1}{4}} \frac{1}{1024}$
- $\mathbf{e} \quad 1 \underset{\times p}{\longrightarrow} p \underset{\times p}{\longrightarrow} p^2 \underset{\times p}{\longrightarrow} p^3 \underset{\times p}{\longrightarrow} p^4 \underset{\times p}{\longrightarrow} p^5$

2 f $x \xrightarrow[\times(-2x)]{} - 2x^2 \xrightarrow[\times(-2x)]{} 4x^3 \xrightarrow[\times(-2x)]{} - 8x^4$ $\xrightarrow[\times(-2x)]{} 16x^5 \xrightarrow[\times(-2x)]{} - 32x^6$

Pearson 🖸

3 a 3 x 9 Common ratio = $\frac{\text{term 2}}{\text{term 1}} \text{ or } \frac{\text{term 3} x}{\text{term 2} 3} \text{ or } \frac{9}{x}$

Solution Bank

Therefore, $\frac{x}{3} = \frac{9}{x} \quad (\text{cross multiply})$ $x^{2} = 27$ $x = \sqrt{27}$ $x = \sqrt{9 \times 3}$ $x = 3\sqrt{3}$

- **b** Term 4 = term 3 × r Term 3 = 9 and $r = \frac{\text{term } 2}{\text{term } 1} = \frac{3\sqrt{3}}{3} = \sqrt{3}$ So term 4 = 9 $\sqrt{3}$
- 4 a 2, 6, 18, 54, ... 6th term = 2×3^5 = 2×243 = 486 *n*th term = $2 \times 3^{n-1}$
 - **b** 100, 50, 25, 12.5, ... 6th term = $100 \times \left(\frac{1}{2}\right)^5$ = $100 \times \frac{1}{32}$ = $\frac{25}{8}$ *n*th term = $100 \times \left(\frac{1}{2}\right)^{n-1}$ **c** 1, -2, 4, -8, ... 6th term = $1 \times (-2)^5$ = 1×-32 = -32

*n*th term = $(-2)^{n-1}$

Pure Mathematics 2

- 4 d 1, 1.1, 1.21, 1.331, ... 6th term = $1 \times (1.1)^5$ = 1×1.61051 = 1.61051*n*th term = $(1.1)^{n-1}$
- 5 *n*th term = 2×5^n 1st term = $2 \times 5^1 = 10$ 5th term = $2 \times 5^5 = 6250$
- 6 Let the first term be *a* and the common ratio = *r* 6th term is 32 $\Rightarrow ar^{6-1} = 32$
 - $\Rightarrow ar^{5} = 32 \qquad (1)$ 3rd term is 4 $\Rightarrow ar^{3-1} = 4$ $\Rightarrow ar^{2} = 4 \qquad (2)$ (1) \div (2): $\frac{ar^{5}}{ar^{2}} = \frac{32}{4}$ $r^{3} = 8$ r = 2
 - Common ratio is 2.
 - Substitute r = 2 into equation (2) $a \times 2^2 = 4$ $a \times 4 = 4$ a = 1First term is 1.

Solution Bank

7

First term is 4. $\Rightarrow a = 4 \qquad (1)$ Third term is $1 \Rightarrow ar^{3-1} = 1$ $\Rightarrow ar^{2} = 1 \qquad (2)$ Substitute a = 4 into (2) $4r^{2} = 1$ $r^{2} = \frac{1}{4}$ $r = \pm \frac{1}{2}$ The sixth term $= ar^{6-1} = ar^{5}$ If $r = \frac{1}{2}$ then sixth term $= 4 \times \left(\frac{1}{2}\right)^{5} = \frac{1}{8}$ If $r = -\frac{1}{2}$ then sixth term $= 4 \times \left(-\frac{1}{2}\right)^{5}$ $= -\frac{1}{8}$ Possible values for sixth term: $\frac{1}{8}, -\frac{1}{8}$.

8 a
$$\frac{u_2}{u_1} = \frac{u_3}{u_2}$$

 $\frac{2x}{8-x} = \frac{x^2}{2x}$
 $4x^2 = 8x^2 - x^3$
 $x^3 - 4x^2 = 0$

- **b** $x^{2}(x-4) = 0$ x = 0 or 4As x > 0, x = 4 a = 4, r = 220th term $= ar^{19}$ $= 4 \times 2^{19}$ $= 4 \times 524288$ = 2097152
- c If 4096 in the sequence then, for some *n*, $ar^{n-1} = 4096$ $4 \times 2^{n-1} = 4096$ $2^{n-1} = 1024$ n-1 = 10n = 11

Yes, 4096 is in the sequence as n is an integer.

Pure Mathematics 2

Solution Bank

9 a a = 200, r = p $u_6 = 200p^5 = 40$ $p^5 = \frac{1}{5}$ $\log p^5 = \log \frac{1}{5}$ $5\log p = \log 1 - \log 5$ $5\log p + \log 5 = 0$ **b** $\log p = \frac{-\log 5}{5}$ $p=10^{\frac{-\log 5}{5}}$ p = 0.725**10** a = 4, $u_4 = 108 = 4r^3$ $r^3 = 27$ r = 3We want *k*th term $> 500\ 000$ So $4 \times 3^{k-1} > 500\ 000$ $3^{k-1} > 125\ 000$ $\log 3^{k-1} > \log 125\ 000$ $(k-1)\log 3 > \log 125\,000$ $k-1 > \frac{\log 125\ 000}{\log 125\ 000}$ log 3 k - 1 > 10.68k > 11.68So k = 1211 a = 9, r = 4 $u_n = 9 \times 4^{n-1} = 383\ 616$ $4^{n-1} = 42\ 624$ $\log 4^{n-1} = \log 42\,624$ $(n-1)\log 4 = \log 42\,624$ $n-1 = \frac{\log 42\ 624}{\log 4}$ n - 1 = 7.69*n* =8.69 *n* is not an integer so 383 616 is not in the sequence.

12 *a* = 3, *r* = -4 3, -12, 48, -192, 768, -3072, 12 288, -49 152 So 49 152 is not in the sequence, but -49 152 is. **13** $3 \xrightarrow[]{}_{x4} 12 \xrightarrow[]{}_{x4} 48 \dots$ This is a geometric series with a = 3 and r = 4. If a term exceeds 1 000 000 then $ar^{n-1} > 1 000 000$ Substitute a = 3, r = 4: $3 \times 4^{n-1} > 1000 000$ $4^{n-1} > \frac{1000 000}{3}$ $\log 4^{n-1} > \log\left(\frac{1000 000}{3}\right)$ $(n-1)\log 4 > \log\left(\frac{1000 000}{3}\right)$ $n-1 > \frac{\log\left(\frac{1000 000}{3}\right)}{\log 4}$ $n-1 > 9.173 \dots$ $n > 10.173 \dots$ So n = 11Term is $3 \times 4^{10} = 3 145 728$