Pure Mathematics 2

Exercise 5C

1 a $1 \underset{\times 2}{\rightarrow} 2 \underset{\times 2}{\rightarrow} 4 \underset{\times 2}{\rightarrow} 8 \underset{\times 2}{\rightarrow} 16 \underset{\times 2}{\rightarrow} 32$
Geometric, $r=2$
b $\quad 2 \underset{+3}{\rightarrow} 5 \underset{+3}{\rightarrow} 8 \underset{+3}{\rightarrow} 11 \underset{+3}{\rightarrow} 14$
Not geometric
(this is an arithmetic sequence)
c $\quad 40 \underset{-4}{\rightarrow} 36 \underset{-4}{\rightarrow} 32 \underset{-4}{\rightarrow} 28$
Not geometric (arithmetic)
d $2 \underset{\times 3}{\rightarrow} 6 \underset{\times 3}{\rightarrow} 18 \underset{\times 3}{\rightarrow} 54$
Geometric, $r=3$
e $\quad 10 \underset{\times \frac{1}{2}}{\rightarrow} 5 \underset{\times \frac{1}{2}}{\rightarrow} 2.5 \underset{\times \frac{1}{2}}{\rightarrow} 1.25$
Geometric, $r=\frac{1}{2}$
f $5 \underset{\times(-1)}{\rightarrow}-5 \underset{\times(-1)}{\rightarrow} 5 \underset{\times(-1)}{\rightarrow}-5$
Geometric, $r=-1$
g $\begin{aligned} & \quad 3 \underset{\times 1}{\rightarrow} 3 \underset{\times 1}{\rightarrow} 3 \underset{\times 1}{\rightarrow} 3 \underset{\times 1}{\rightarrow} 3 \\ & \text { Geometric, } r=1\end{aligned}$
h $4 \underset{\times\left(-\frac{1}{4}\right)}{\rightarrow}-1 \underset{\times\left(-\frac{1}{4}\right)}{\rightarrow} 0.25 \underset{\times\left(-\frac{1}{4}\right)}{\rightarrow}-0.0625$
Geometric, $r=-\frac{1}{4}$

2 a $5 \underset{\times 3}{\rightarrow} 15 \underset{\times 3}{\rightarrow} 45 \underset{\times 3}{\rightarrow} 135 \underset{\times 3}{\rightarrow} 405 \underset{\times 3}{\rightarrow} 1215$
b $4 \underset{\times(-2)}{\rightarrow}-8 \underset{\times(-2)}{\rightarrow} 16 \underset{\times(-2)}{\rightarrow}-32 \underset{\times(-2)}{\rightarrow} 64 \underset{\times(-2)}{\rightarrow}-128$
c $\quad 60 \underset{\times \frac{1}{2}}{\rightarrow} 30 \underset{\times \frac{1}{2}}{\rightarrow} 15 \underset{\times \frac{1}{2}}{\rightarrow} 7.5 \underset{\times \frac{1}{2}}{\rightarrow} 3.75 \underset{\times \frac{1}{2}}{\rightarrow} 1.875$
d $\quad \underset{\times \frac{1}{4}}{\rightarrow} \frac{1}{4} \underset{\times \frac{1}{4}}{\rightarrow} \frac{1}{16} \underset{\times \frac{1}{4}}{\rightarrow} \frac{1}{64} \rightarrow \frac{1}{\times \frac{1}{4}} \frac{1}{256} \underset{\times \frac{1}{4}}{\rightarrow} \frac{1}{1024}$
e $\quad \underset{\times p}{\rightarrow} p \underset{\times p}{\rightarrow} p^{2} \underset{\times p}{\rightarrow} p^{3} \underset{\times p}{\rightarrow} p^{4} \underset{\times p}{\rightarrow} p^{5}$

2 f $x \underset{\times(-2 x)}{\rightarrow}-2 x^{2} \underset{\times(-2 x)}{\rightarrow} 4 x^{3} \underset{\times(-2 x)}{\rightarrow}-8 x^{4}$ $\underset{\times(-2 x)}{\rightarrow} 16 x^{5} \underset{\times(-2 x)}{\rightarrow}-32 x^{6}$
$\begin{array}{lllll}3 & \mathbf{a} & 3 & x & 9\end{array}$
Common ratio $=\frac{\operatorname{term} 2}{\text { term } 1}$ or $\frac{\operatorname{term} 3}{\operatorname{term} \overline{2}} \frac{x}{3}$ or $\frac{9}{x}$
Therefore,
$\frac{x}{3}=\frac{9}{x} \quad($ cross multiply $)$
$x^{2}=27$
$x=\sqrt{27}$
$x=\sqrt{9 \times 3}$
$x=3 \sqrt{3}$
b \quad Term $4=$ term $3 \times r$
Term $3=9$ and
$r=\frac{\text { term } 2}{\text { term } 1}=\frac{3 \sqrt{3}}{3}=\sqrt{3}$
So term $4=9 \sqrt{3}$

4 a $2,6,18,54, \ldots$
6 th term $=2 \times 3^{5}$

$$
=2 \times 243
$$

$$
=486
$$

nth term $=2 \times 3^{n-1}$
b $100,50,25,12.5, \ldots$
6 th term $=100 \times\left(\frac{1}{2}\right)^{5}$
$=100 \times \frac{1}{32}$
$=\frac{25}{8}$
nth term $=100 \times\left(\frac{1}{2}\right)^{n-1}$
c $1,-2,4,-8, \ldots$
6th term $=1 \times(-2)^{5}$
$=1 \times-32$
$=-32$
nth term $=(-2)^{n-1}$

Pure Mathematics 2

4 d 1, 1.1, 1.21, $1.331, \ldots$
6th term $=1 \times(1.1)^{5}$
$=1 \times 1.61051$
$=1.61051$
nth term $=(1.1)^{n-1}$
$5 n$th term $=2 \times 5^{n}$
1 st term $=2 \times 5^{1}=10$
5 th term $=2 \times 5^{5}=6250$
6 Let the first term be a and the common ratio $=r$
6th term is 32
$\Rightarrow a r^{6-1}=32$
$\Rightarrow a r^{5}=32$
3rd term is 4
$\Rightarrow a r^{3-1}=4$
$\Rightarrow a r^{2}=4$
(1) $\div(2)$:

$$
\begin{align*}
\frac{d r^{5}}{d r^{2}} & =\frac{32}{4} \tag{2}\\
r^{3} & =8 \\
r & =2
\end{align*}
$$

Common ratio is 2 .
Substitute $r=2$ into equation (2)

$$
\begin{aligned}
a \times 2^{2} & =4 \\
a \times 4 & =4 \\
a & =1
\end{aligned}
$$

First term is 1 .

7 First term is 4 .

$$
\begin{equation*}
\Rightarrow a=4 \tag{1}
\end{equation*}
$$

Third term is $1 \Rightarrow a r^{3-1}=1$

$$
\begin{equation*}
\Rightarrow a r^{2}=1 \tag{2}
\end{equation*}
$$

Substitute $a=4$ into (2)

$$
\begin{aligned}
4 r^{2} & =1 \\
r^{2} & =\frac{1}{4}
\end{aligned}
$$

$$
r= \pm \frac{1}{2}
$$

The sixth term $=a r^{6-1}=a r^{5}$
If $r=\frac{1}{2}$ then sixth term $=4 \times\left(\frac{1}{2}\right)^{5}=\frac{1}{8}$
If $r=-\frac{1}{2}$ then sixth term $=4 \times\left(-\frac{1}{2}\right)^{5}$

$$
=-\frac{1}{8}
$$

Possible values for sixth term: $\frac{1}{8},-\frac{1}{8}$.
8 a $\frac{u_{2}}{u_{1}}=\frac{u_{3}}{u_{2}}$
$\frac{2 x}{8-x}=\frac{x^{2}}{2 x}$
$4 x^{2}=8 x^{2}-x^{3}$
$x^{3}-4 x^{2}=0$
b $x^{2}(x-4)=0$
$x=0$ or 4
As $x>0, x=4$
$a=4, r=2$
20th term $=a r^{19}$
$=4 \times 2^{19}$
$=4 \times 524288$
$=2097152$
c If 4096 in the sequence then,
for some $n, a r^{n-1}=4096$
$4 \times 2^{n-1}=4096$
$2^{n-1}=1024$
$n-1=10$
$n=11$
Yes, 4096 is in the sequence as n is an integer.

Pure Mathematics 2

9 a $a=200, r=p$
$u_{6}=200 p^{5}=40$
$p^{5}=\frac{1}{5}$
$\log p^{5}=\log \frac{1}{5}$
$5 \log p=\log 1-\log 5$
$5 \log p+\log 5=0$
b $\quad \log p=\frac{-\log 5}{5}$
$p=10^{\frac{-\log 5}{5}}$
$p=0.725$
$10 a=4, u_{4}=108=4 r^{3}$
$r^{3}=27$
$r=3$
We want k th term >500000
So $4 \times 3^{k-1}>500000$
$3^{k-1}>125000$
$\log 3^{k-1}>\log 125000$
$(k-1) \log 3>\log 125000$
$k-1>\frac{\log 125000}{\log 3}$
$k-1>10.68$
$k>11.68$
So $k=12$
$11 a=9, r=4$
$u_{n}=9 \times 4^{n-1}=383616$
$4^{n-1}=42624$
$\log 4^{n-1}=\log 42624$
$(n-1) \log 4=\log 42624$
$n-1=\frac{\log 42624}{\log 4}$
$n-1=7.69$
$n=8.69$
n is not an integer so 383616 is not in the sequence.
$12 a=3, r=-4$
$3,-12,48,-192,768,-3072,12288,-49152$
So 49152 is not in the sequence, but -49152
is.
$13 \underset{\times 4}{\rightarrow} 12 \underset{\times 4}{\rightarrow} 48 \ldots$
This is a geometric series with $a=3$ and $r=4$.
If a term exceeds 1000000 then

$$
a r^{n-1}>1000000
$$

Substitute $a=3, r=4$:

$$
3 \times 4^{n-1}>1000000
$$

$$
4^{n-1}>\frac{1000000}{3}
$$

$$
\log 4^{n-1}>\log \left(\frac{1000000}{3}\right)
$$

$$
(n-1) \log 4>\log \left(\frac{1000000}{3}\right)
$$

$$
n-1>9.173 \ldots
$$

$$
n>10.173 \ldots
$$

So $n=11$
Term is $3 \times 4^{10}=3145728$

